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Abstract Thermostats models in space dimension d = 1,2,3 for nonequilibrium statistical
mechanics are considered and it is shown that, in the thermodynamic limit, the evolutions
admit infinitely many constants of motion: namely the intensive observables.
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1 Thermostats

Systems in nonequilibrium statistical mechanics have to be thermostatted, and the most re-
alistic thermostats are infinite (i.e., very large) systems initially in equilibrium. The present
paper discusses a small (classical) system interacting with fairly realistic infinite (classical)
thermostats of dimension d = 1,2, or 3. This can be attacked via recent difficult results on
the time evolution of infinite systems in dimension d = 1,2, or 3. It is assumed that the
initial equilibrium states of the thermostats are away from phase transitions. Some techni-
cal assumptions on the interactions are also made. The result obtained here may then be
expressed physically as follows: at any finite time each thermostat remains close to equi-
librium in the sense that its global temperature remains the same, and this is also true for
other intensive thermodynamic variables. If an infinite time limit were taken the situation
would probably be quite different (and nontrivial only in dimension d = 3) but this is a hard
problem, and not tackled in the present paper.

The class of models that we shall investigate is when particles of a test system, in a
container �0, and ν other particles systems, in containers �1, . . . ,�ν , interact and define a
model of a system in interaction with ν thermostats, if the particles in �1, . . . ,�ν can be
considered at fixed temperatures T1, . . . , Tν .

G. Gallavotti (�)
Fisica-INFN, Università di Roma 1, Roma, Italy
e-mail: giovanni.gallavotti@roma1.infn.it

E. Presutti
Matematica, Università di Roma 2, Roma, Italy

mailto:giovanni.gallavotti@roma1.infn.it


Frictionless Thermostats and Intensive Constants of Motion 619

Fig. 1 If d = 1,2 the 1+ν finite boxes �j ∩�, j = 0, . . . , ν, are marked C0, C1, . . . , Cν in the first figure and
contain N0,N1, . . . ,Nν particles, out of the infinitely many particles, with positions and velocities denoted
X0,X1, . . . ,Xν , and Ẋ0, Ẋ1, . . . , Ẋν , respectively, contained in �j , j ≥ 0. The second figure illustrates the
special geometry that will be considered for d = 1,2,3: here two thermostats, symbolized by the shaded
regions, �1,�2 occupy half-spaces adjacent to �0

A representation of the system is in Fig. 1:

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xν, Ẋν)

From the point of view of Physics the temperatures in the thermostats are fixed. A natural
model, often invoked in the applications, [1], is to imagine the containers �j , j = 1, . . . , ν,
as infinite and occupied by particles initially in a Gibbs distribution with given temperatures
and densities T1, δ1, . . . , Tν, δν .

To implement the physical requirement that the thermostats have well defined tempera-
tures and densities the initial data will be imagined to be randomly chosen with a suitable
Gibbs distribution

Initial data The probability distribution μ0 for the random choice of initial data will be,

if dx
def= ∏ν

j=0
dXj dẊj

Nj ! , the limit as � → ∞ of the distributions on the configurations x ∈
H(�) with Xj ∈ � (see Fig. 1),

μ0,�(dx) = const e−H0(x) dx (1.1)

with H0(x) = ∑ν

j=0 βj (Kj (Ẋj ) − λjNj + Uj(Xj )) and βj

def= 1
kBTj

> 0, λj ∈ R, j > 0; the

values β0 = 1
kBT0

> 0, λ0 ∈ R will also be fixed.

The values β0, λ0 bear no particular physical meaning because the test system is kept
finite. Here λ = (λ0, λ1, . . . , λν) and T = (T0, T1, . . . , Tν) are fixed chemical potentials and
temperatures, and � is a ball centered at the origin and of radius r0. The Kj(Ẋj ),Uj (Xj )

are kinetic and potential energies of the particles in �j (see below for the conditions on the
potentials).

The distribution μ0 is interpreted as a Gibbs distribution μ0 obtained by taking the “ter-
modynamic limit” � → ∞. At time 0 we switch on the interaction between the particles
in �0 and those in the thermostats �j , j > 0. The measure μ0 is not time invariant under
the corresponding dynamics (existence of dynamics in infinite systems is not at all a trivial
issue, as already revealed by the theory of the evolution in the infinite space [2] and as it will
be discussed later) and we need to:

(i) define the temperatures of the thermostats (which are outside equilibrium);
(ii) prove that the “macroscopic” property of the thermostats of having given densities and

temperatures remains when the system evolves in time.
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If pj (β,λ;�)
def= 1

β|�j ∩�| logZj(β,λ) with

Zj(β,λ) =
∞∑

N=0

∫
dxN

N ! e−β(−λN+Kj (xN )+Uj (xN )) (1.2)

where the integration is over positions and momenta of the N particles in � ∩ �j then
we shall say that (at least at time 0) the thermostats have pressures pj (βj , λj ), densities
δj , temperatures Tj , energy densities ej , and potential energy densities uj , for j > 0,
given by equilibrium thermodynamics, i.e.:

pj (β,λ)
def= lim

�→∞
pj (βj , λj ,�)

δj = −∂pj (βj , λj )

∂λj

, kBTj = β−1
j (1.3)

ej = −∂βjpj (βj , λj )

∂βj

− λj δj , uj = ej − d

2
δjβ

−1
j

which are the relations linking density δj , temperature Tj = (kBβj )
−1, energy density ej

and potential energy density uj in a grand canonical ensemble and in absence of phase
transitions in correspondence of the parameters (βj , λj ), for j > 0.

Remark (1) notice that the limit defining pj does not depend on the shape of �j and coin-
cides with the usual definition of pressure in the thermodynamic limit in the sense of Van
Hove, [3].

(2) As usual in Physics we could define density, energy density and temperatures in single
configurations x as

lim
n→∞

(
Nj,�n(x)

|�n ∩ �j | ,
Uj,�n(x)

|�n ∩ �j | ,
Kj,�n(x)

Nj,�n(x)

)

(1.4)

provided the limit exists.
(3) By the Birkhoff theorem applied to systems in the full space Rd , the limits exist

with probability 1 for any translational invariant infinite-volume Gibbs measure (i.e. a DLR
distribution, [4]). Moreover under an additional assumption of “extremality” the limits are
almost surely the same for all x. By suitable assumptions on the parameters βj and λj , stated
later in this section, we shall see that the limits in (1.4) exist with μ0 probability 1 and are
equal to the values in (1.3).

Time independence of the intensive observables (in particular those in (1.4)) is the central
issue in this paper. Even if the evolution is defined with only H0, i.e. no interaction between
�0 and the thermostats so that μ0 is time-invariant, yet, in general, one can only conclude
that along “typical trajectories” the intensive observables are constant at countably many
times (for instance at all rational times).

However under our assumptions on βj and λj (essentially absence of phase transitions)
and in the interesting case when the interaction between �0 and the thermostats is switched
on then, by choosing the initial configurations with μ0 probability 1, we shall prove that
the intensive observables keep the same initial value at all finite times. This justifies our
terminology to call thermostat the systems �j , j > 0.
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Hypotheses In the geometries of Fig. 1 suppose:

(1) μ0 satisfies the DLR equations and that
(2) the thermostats pressures pj (β,λ) are differentiable in β,λ at βj ,λj , j = 1, . . . , ν.

It is essential that the “macroscopic” property of the thermostats, of having given densi-
ties and temperatures, remains when the system evolves in time.

Evolution is defined via equations of motion: since we are dealing with infinitely many
particles it will be defined by first considering the motion of the particles initially contained
in some ball � keeping the particles outside � fixed. Such motion x → S

(�)
t x is called

�-regularized: then we shall consider the limit as � → ∞.
The regularization boxes � will be (for simplicity) balls �n centered at the origin O

and with radius 2nrϕ , with rϕ equal to the range of the interparticle potential, and particles
will be reflected at the boundary of �n. The limit motion reached as n → ∞ will define the
thermodynamic limit motion.

The �n-regularized equations of motion will be

mẌ0i = −∂iU0(X0) −
∑

j>0

∂iU0,j (X0,Xj ) + Φ i (X0),

mẌj i = −∂iUj (Xj ) − ∂iU0,j (X0,Xj )

(1.5)

(see Fig. 1) where:

(1) the first label, j = 0 or j = 1, . . . , ν, refers (respectively) to the test system or to a
thermostat, while the second indicates the derivatives with respect to the coordinates
of the points located in the corresponding container and in the regularization box �n

(hence the labels i in the subscripts (j, i) have Njd values).
(2) The forces Φ(X0) are, positional, nonconservative, smooth stirring forces, possibly van-

ishing; the other forces are conservative and generated by a pair potential ϕ, with range
rϕ , which couples all pairs in the same containers and all pairs of particles one of which
is located in �0 and the other in �j (i.e. there is no direct interaction between the
different thermostats).

(3) Furthermore particles are repelled by the boundaries of the containers by a conserva-
tive force of potential energy ψ , diverging with the distance r to the walls as r−α , for
some α > 0, and of range rψ � rϕ . The potential energies will be Uj(Xj ), j ≥ 0, and
U0,j (X0,Xj ), respectively denoting the internal energies of the various systems and the
potential energy of interaction between the test system and the thermostats:

Uj(X) =
∑

q∈Xj

ψ(q) +
∑

(q,q ′)∈Xj ,q∈�

ϕ(q − q ′),

U0,j (X0,Xj ) =
∑

q∈X0,q ′∈Xj

ϕ(q − q ′).
(1.6)

The potentials ϕ,ψ have been chosen j -independent for simplicity.
(4) The equations are formally defined also in the phase space H of the locally finite con-

figurations x = (. . . , qi, q̇i , . . .)
∞
i=1

x = (X0, Ẋ0,X1, Ẋ1, . . . ,Xn, Ẋn) = (X, Ẋ) (1.7)

with Xj ⊂ �j , hence X ⊂ � = ⋃ν

j=0 �j , and q̇i ∈ R
d ; in every ball �(r ′) of radius r ′

and center at the origin O , fall a finite number of points of X.
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Infinite systems are idealizations not uncommon in statistical mechanics. But we take it
for granted that they must be considered as limiting cases of large yet finite systems. This
leads to several difficulties: one is immediately manifest if one remarks that the equations
of motion (1.5) do not even admit an obvious solution in H.

Dynamics is well defined with μ0-probability 1 because if d = 1,2,3 the �n-regularized

equations with data x admit, with μ0-probability 1, a limit Stx
def= lim�n→∞ S

(�n)
t x for all

t > 0: a precise statement is in theorem 4 below (proved in [5, Theorems 6,7], for d = 1,2,
and in [6, Theorem 1] for d = 1,2,3).

Since the (1.5) are Newton’s equations we shall call the model a frictionless thermostats
model: this is to contrast it with other thermostats models in which artificial “frictional”
forces are introduced to make it possible for the system to reach a stationary state. In models
with friction entropy production (generated in the thermostats by their interaction with the
system) due to the evolution is naturally defined in terms of the phase space contraction: it
is therefore interesting to see that even in absence of friction entropy production occurs and
actually it can be identified, in the thermodynamic limit, with the same quantity that would
arise in thermostats realized via artificial frictional forces. The latter are widely studied in
the numerical simulations as approximations to infinite systems in a thermodynamic limit,
because it is not possible to simulate really infinite systems. See Sect. 5.

An important question is whether time evolution changes the configuration x into Stx but
keeps the temperatures and densities of the thermostats constant at least with μ0-probability
1 and for any finite time. This is part of the more general question whether the spatial average
of an intensive observable remains constant in time.

A simple, partial but quantitative, formulation is in terms of the number Nj,�(Stx) of
particles of Stx, of the kinetic energy Kj,�(Stx) and of the potential energy Uj,�(Stx) of
the configuration Stx into which x evolves at time t , inside a ball � centered at the origin.
Consider, then, ∀j > 0, the limits (if existent)

lim
n→∞

(
Nj,�n(Stx)

|�n ∩ �j | ,
Uj,�n(Stx)

|�n ∩ �j | ,
Kj,�n(Stx)

|�n ∩ �j |
)

. (1.8)

Under the above “no phase transition” assumption on μ0 we shall prove:

Theorem 1 The limits in (1.8) exist with μ0-probability 1 for all times and are time indepen-
dent. The limits will be respectively δj , uj and d

2 δj kBTj with μ0-probability 1, as in (1.3).

Remark This shows that the thermostats keep, in the thermodynamic limit, the same tem-
perature and density that they had in the initial state: a property that has to be required for
the model to adhere to the physical intuition behind the empirical notion of thermostats.
Hence density and temperature of the thermostats are constants of motion. We shall show
that more generally many other intensive observables are also constants of motion.

2 Intensive Observables

The definition of an h-particles intensive observable is in terms of a smooth function
(q1, q̇1, . . . , qh, q̇h) on R2d h vanishing for h �= h and which is “translation invariant”,
and with “short range” r .

This means that  = 0 if the diameter of X = (q1, . . . , qh) exceeds some r > 0 and,
denoting by τξ (X, Ẋ) the configuration (q1 + ξ, q̇1, . . . , qh + ξ, q̇h), it is (τξ (X, Ẋ)) =
(X, Ẋ), ∀ξ ∈ R

d .
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Given a region W the function GW of x = (X, Ẋ)

GW(x)
def=

∑

Y⊂X∩W

(Y, Ẏ ) (2.1)

defines a “local observable” in W ⊂ Rd with potential .
We shall say that GW is an observable of potential type if (Y, Ẏ ) depends only on Y ,

while if it depends only on Ẏ it will be called of kinetic type.

Then, if Vn

def= �j ∩ �n, |Vn| def= volume(Vn),

Definition 1 The “local average”of  on the configuration x = (X, Ẋ) is |Vn|−1GVn(x).
The corresponding “intensive observable” in the j -th thermostat is

g(x)
def= lim

n→∞
1

|Vn|GVn(x), (2.2)

if the limit exists. Furthermore, given μ0, define the “intensive fluctuation” of G (in the j -th
thermostat)

�G(x)
def= lim

n→∞

(
1

|Vn|GVn(x) − μ0

(
1

|Vn|GVn

))
def= lim

n→∞�G,Vn(x), (2.3)

if the limit exists.

Remark The notation requires keeping in mind that GVn depends also on j (because Vn =
�j ∩�n): however for simplicity of notation the labels j on Vn and GVn will not be marked.

Properties of intensive observables can be derived from various assumptions on the ini-
tial distributions of the particles in the various regions �j which, we recall, are distributed
independently over j = 1, . . . , ν and depend on the ν pairs of parameters βj ,λj .

The simplest assumption is perhaps the uniqueness of the tangent plane to the graph of
the pressure in various directions, which could for instance be insured by the uniqueness of
the translation invariant states of our particles system with parameters βj ,λj .

Let G be an observable of potential or kinetic type; and suppose that H0,�,(x)
def=

H0,�(x)+θG�(x) is superstable for |θ | small enough (i.e. there exist constants a > 0, b ≥ 0
such that for all balls � it is H0,�,(x) ≥ aN2/|�| − bN for all configurations x = (X, Ẋ)

with N particles and with X ⊂ � and ∀|θ | ≤ θ0 for some θ0 > 0. We call G an “allowed
observable”. For such observables it is possible to define, for |θ | small, the “pressure”

P (θ) = lim
�→∞

1

|V | log
Zj(θ)

Zj (0)
(2.4)

with Zj(θ) given by (1.2) with the energy θ GV (x) added in the exponential. It is P (0) ≡ 0.
It is important to stress that P (θ) is, in the geometries in Fig. 1 considered here, indepen-

dent of the special geometry considered for the �j as long as the conical containers have
d-dimensional shape (i.e. they contain balls of arbitrarily large radius).

In this context we can derive the following result:

Theorem 2 Let G be an allowed observable of potential or kinetic type. If P (θ) is differ-
entiable at θ = 0, then with μ0-probability 1 the limit as |Vn| → ∞ of 1

|Vn|GVn(Stx) exists
μ0-almost everywhere and is t -independent.
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Remarks (1) The differentiability assumption of P (θ) has the meaning of uniqueness of the
tangent plane to the graph of the pressure p “in the direction of G”: such uniqueness is a
“generic” property, see [7] for the lattice gas case.

(2) The superstability of H0,�(x) + θG�(x) is a very strong condition: it is certainly
satisfied if

(i) (X, Ẋ) = 1 for |X| = 1 and 0 otherwise, or if
(ii) (X, Ẋ) = 1

2 q̇2 for |X| = 1 and 0 otherwise, or if
(iii) (X, Ẋ) = 0 unless X = (q, q ′) and in such case (q, q ′) = ϕ(q − q ′), therefore

Theorem 1 is a corollary of Theorem 2.

We also expect that the intensive observables will have very small probability of being
appreciably different from their average values, and precisely a probability bounded above
by an exponential of the volume |�n|. This will mean that the observable G satisfies a kind
of large deviations property:

Theorem 3 Under the assumptions of theorem 2 the μ0-probability that the fluctuation
�G,�n(Stx) differs from 0 by more than ε > 0 tends to 0 exponentially fast in |Vn| as n → ∞,
∀ε > 0.

Remark The assumptions in Theorems 2, 3 are satisfied by many observables in the Mayer
expansion convergence region in the plane λj ,βj , [8]. They are also believed to be satisfied
quite generally for observables generated by a potential . In particular they hold generically
if  is a linear combination of the potentials (i), (ii), (iii) in remark (2) above.

The proof of Theorems 2, 3 are presented in Sect. 4.

3 Time Evolution

A quantitative existence theorem of the dynamics can be conveniently formulated in terms

of the quantities v1
def= √

2ϕ(0)/m, rϕ and W, N , v1,‖x1‖ defined as

W(x; ξ,R)
def= 1

ϕ(0)

∑

qi∈B(ξ,R)

(
mq̇2

i

2
+ 1

2

∑

j ;j �=i

ϕ(qi − qj ) + ψ(qi) + ϕ(0)

)

,

Nξ (x)
def= number particles within rϕ of ξ ∈ R

d , (3.1)

‖xi − x ′
i‖ def= |q̇i − q̇ ′

i |/v1 + |qi − q ′
i |/rϕ.

Let log+ z
def= max{1, log2 |z|}, gζ (z) = (log+ z)ζ and

Eζ (x)
def= sup

ξ

sup
R>gζ (ξ/rϕ)

W(x; ξ,R)

Rd
. (3.2)

Call Hζ the configurations in H with

(1) Eζ (x) < ∞,

(2)
N(j,�n)

|�n ∩ �j | ,
U(j,�n)

|�n ∩ �j | ,
K(j,�n)

|�n ∩ �j | −−−→
n→∞ δj , uj ,

d δj

2βj

(3.3)
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with �n the ball centered at the origin and of radius 2n rϕ δj , uj , Tj , given by (1.8) if
N(j,�n), U(j,�n),K(j,�n) denote the number of particles and their internal potential
or kinetic energy in �j ∩ �n. Each set Hζ has μ0-probability 1 for ζ ≥ 1/d , [2, 9–11].
Then:

Theorem 4 Let d ≤ 3, then H1/d has μ0-probability 1 and Stx exists for μ0-almost all

x ∈ H1/d and ∀t ≥ 0. Given (arbitrarily) a time � > 0, if E def= E1/d(x), and |qi(0)| ≤ 2krϕ

there are c = c(E ,�) < ∞, c′ = c′(E ,�) > 0 such that ∀n ≥ k and ∀t ≤ �

|q̇i (t)| ≤ c v1 k
1
2 ,

distance

(

qi(t), ∂

(
⋃

j �j

))

≥ c′ rϕ k− 1
α

Nξ (Stx) ≤ c k1/2

‖(Stx)i − (S
(n)
t x)i‖ ≤ e−c′2n/2

, n > k.

(3.4)

This is proved in [5, Theorem 7] for d = 2 and in [6] for d = 3 (the latter reference covers
also the case d = 2 via a somewhat different approach).

Remark that the theorem does not state that the second of (3.3) holds: in [5, 6] it is
however proved, in addition to Theorem 4, the weaker statement that the lim inf of

Kj,�n (St x)

|�j ∩�n|
is not smaller than 1

2 of the corresponding r.h.s.; and the same is true for the other two
quantities in (3.3).

A corollary of the main results of this paper will be that the limit relations in (3.3) will
hold for all t > 0.

4 Constants of Motion

Let  be an h-points local observable of potential type, Vn = �j ∩ �n. Under the assump-
tions of Theorem 2 we first show that limn→∞ |Vn|−1〈G�n 〉μ0

= g exists.

Define Pn(θ)
def= 1

|Vn| log 〈 e−θGVn 〉μ0
: this is smooth and convex in θ and its unique

derivative at θ = 0 is gn

def= 1
|Vn|μ0(GVn); therefore, remarking that P (0) = 0, it satisfies

Pn(θ) ≥ θ gn.
The limit P (θ) as n → ∞ of Pn(θ) is the same that would be obtained if Vn was replaced

by the full ball �n and filled with particles at temperature β−1
j and chemical potential λj .

Any convergent subsequence gni
defines therefore a coefficient g with the property

P (θ) ≥ θg. Hence, by the assumed uniqueness of the tangent to P (θ) at θ = 0, it follows

that g is uniquely determined thus implying that the limit g
def= limn→∞ gn exists.

Let gn = 〈 |Vn|−1G�n 〉μ0
and, given γ > 0, let XE,γ,n to be the set of points in H1/d

with E (x) ≤ E, G�n(x) < (gn + 1
2γ )|Vn| and which, under the evolution, reach in a time

τγ,n(x) ≤ � and for the first time, a point of the surface

�n,γ

def= {x | |Vn|−1G�n(x) = (gn + γ ) }. (4.1)

If for all E and for all small γ > 0 it is
∑

n μ0(XE,γ,n) < +∞ then it will be
lim supn→∞ |Vn|−1G�n(Stx) ≤ g, with μ0-probability 1 (by Borel–Cantelli’s estimate);
changing  into − it will follow, again with μ0-probability 1, that the lim inf is ≥ g:
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notice that the change in sign of  is possible by the condition on G to be an “allowed
observable”, as introduced before (2.4).

This remains true if for all small γ there exists γn ∈ [γ,2γ ] such that
∑

nμ0(XE,γn,n) <

+∞.
If x ∈ XE,γ,n the phase space contraction, when phase space volume is measured by μ0,

within time t is, [5, 6],

s(x, t) =
∫ t

0

(∑

j≥0

βjQj (τ ) + β0L0(τ )

)

dτ (4.2)

where Qj(t)
def= Ẋj (t) · Fj , L0(t)

def= Ẋ0 · Φ(X0(t)).
By Theorem 4, L0(t) is uniformly bounded as n → ∞, for 0 ≤ t ≤ �, by the first of

(3.2), by a quantity C (only depending on E,n0,�).
Therefore by a quasi-invariance lemma, [2, 12], [5, Appendix H], the probability

μ0(XE,γ+ε,n) can be bounded ∀ε ∈ [γ,2γ ] by

C

∫

μ0(dx)
|Ĝ|
|Vn|δ

(
G�n(x)

|Vn| − (gn + γ + ε)

)

(4.3)

where Ĝ denotes the time derivative (at t = 0) of G�n(Stx) (to be computed via the equa-
tions of motion) evaluated on the surface �n,γ+ε , see (4.1).

Integrating (4.3) over dε/γ , μ0(XE,n,γn ) can be bounded by

C

γ

∫

μ0(dx)
|Ĝ|
|Vn|χ

(

γ ≤ G�n(x)

|Vn| − gn ≤ 2γ

)

, (4.4)

with Ĝ = ∑
X⊂Vn

∑
q∈X ∂q(X) q̇ . By Schwartz’ inequality

C2γ
−1μ0

({

x : γ ≤ G�n(x)

|Vn| − gn ≤ 2γ

})1/2

(4.5)

because from (2.1) for 

μ0(Ĝ
2)1/2 ≤ C1|Vn| (4.6)

obtained via superstability bounds, using the Maxwellian distribution for q̇ .
The probability in (4.5) is bounded above by Chebishev inequalities (quadratic or expo-

nential) by both averages

I
def=

〈
(G�n(x)/|Vn| − gn)

2

γ 2

〉

μ0

, Iθ

def= 〈
eθ (G�n −|Vn|(gn+γ ))

〉
μ0

(4.7)

∀ θ ≥ 0. This implies the existence of γn ∈ [γ,2γ ] with:

μ0(XE,n,γn ) ≤ C3γ
−1J (n), J (n)2 = I, Iθ (4.8)

Therefore we look for assumptions on the thermostats structure (i.e. on λj ,βj , ϕ) under
which J (n) tends to zero fast enough making

∑
n μ0(XE,n,γn ) < ∞. In this case Theorem 2

will follow from Borel-Cantelli’s lemma and the arbtrariness of γ .
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As a consequence of the above bounds, basically following from the uniqueness of the
tangent plane in the direction , the proof of Theorem 2 can be completed as follows. Fix
γ > 0 and remark that

Iθ = 〈 eθU,Vn 〉μ0
e−θ(gn+γ )|Vn| ≤ e−θγ |Vn|+η(θ,Vn) (4.9)

Continuing the argument leading to the existence of the limit of gn, at the beginning of the
section, the correction term η(θ,Vn) is bounded as follows:

(a) 1
|Vn| log 〈 eθU,Vn 〉μ0

is Pn(θ) − Pn(0) (notice: Pn(0) ≡ 0) and converges to P (θ) − P (0)

as Vn → ∞ for |θ | ≤ θ0, if θ0 is small enough so that the potential ϕ + β−1
j θ is super-

stable ∀ |θ | ≤ θ0, j = 1, . . . , ν. By superstability the limit exists for |θ | ≤ θ0 and it is
a limit of functions Pn(θ) which are convex for |θ | ≤ θ0. Hence the limit is uniform:
|P (θ) − Pn(θ)| ≤ o(|Vn|) for |θ | ≤ θ0,

(b) the gn in the exponent in (4.7) has just been shown to be gn|Vn| = g|Vn| + o(|Vn|),
so that −θ gn converges to −θ g with an error θ o(|Vn|),

(c) (P (θ) − P (0) − θ g)|Vn| is (by the uniqueness of the tangent plane) o(θ) |Vn|. Hence

η(θ,Vn) − γ θn|Vn|

≤ −1

2
γ θn|Vn| +

(

−1

2
γ θn + o(|Vn|)

|Vn| + o(θn)

)

|Vn| ≤ −1

2
γ θn|Vn| (4.10)

and choosing θn tending to 0 so slowly that the exponent of the r.h.s. of (4.9) tends
rapidly to ∞, for instance if θn = max( 1

logn
, 1

4γ

o(|Vn|)
|Vn| ), we see that Iθn −−−→

n→∞ 0 so fast
that μ0(XE,n,γn ) is summable in n implying Theorem 2 and of its special case Theo-
rem 1.

Theorem 3 also follows from the existence of the limit for gn because Iθ yields a sum-
mable bound on J , hence on μ0(�

2
G,�n

).

Remarks (1) Uniqueness of the tangent plane can be replaced by assumptions on the decays
of correlations in the distribution μ0 somewhat stronger than just requiring its extremality
among the DLR distributions in the geometry in Fig. 1.

(2) Sufficient estimates can be formulated as follows: ρj (x1, . . . , xn) be the n-points cor-
relation function in the j -th container: by superstability ρj ≤ Cn, [9]. If x = (q, q̇) and
ξ ∈ �j , extremality of μ0, implies, [4, 9], for x1, . . . , xn and y1, . . . , ym with positions in �j :

|ρj (x1, . . . , xn, τξ y1, . . . , τξ ym) − ρj (x1, . . . , xn)ρj (τξy1, . . . , τξ ym)|−−−→
ξ→∞ 0. (4.11)

Assume that (4.11) holds in the stronger sense that the l.h.s. is bounded by ηR,m,n(ξ) if the
positions of x1, . . . , xn and y1, . . . , ym can be enclosed in a ball of radius R.

Theorem 5 If there is a constant CR,m,n < ∞ such that ηR,m,n(ξ) ≤ CR,m,n|ξ |−a(R,m,n) with
a(R,m,n) > 0 and if lim�→∞ 1

|Vn|μ0(GVn) = g exists, then lim�→∞ 1
|Vn|�G,Vn(x) = 0 and

lim�→∞ 1
|Vn|GVn(Stx) = g with μ0 probability 1.

Remarks (1) Thus if μ0 has a power law cluster property all intensive observables admitting
an average value, over space translations, at time 0 are constants of motion.
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(2) With the above assumptions we avoid use of the exponential Chebishev inequality
and we may thus drop the superstability condition in the definition of the potential . We
could actually consider more general observables of the form (in �j )

lim
n→∞

1

|�j ∩ �n|
∫

r∈Rd :τr�⊂�j ∩�n

τrf (x)dr, (4.12)

where f is a cylindrical function in � (i.e. it does not depend on the particles outside �)
and τr denotes translation by r . If the power law cluster property is satisfied and μ0 a.s. the
limit in (4.12) exists at time 0, then the intensive observables (4.12) are constant of motion
under the assumption that f is smooth and grows at most polynomially with the number of
particles.

(3) The assumption certainly holds in the cluster expansion convergence region, [3] and
[13, Sect. 5.9], i.e high temperature and low density, without extra assumptions.

Proof Consider the first of (4.7) and choose γ = γn = 1
n

. The numerator tends to 0 as
|Vn|−a(R,n,n)/d if the potential  for the observable GVn vanishes when the diameter of the
set {x1, . . . , xn} exceeds R.

The estimate (4.8) implies that 1
|Vn|�G,Vn(Stx) tends to 0 with μ0-probability 1 for all

t ≤ kt0 with k integer and t0 > 0 (arbitrarily fixed). Hence if the average of 1
|Vn|μ0(GVn)

exists it exists for all times and has a time-independent value. �

5 Entropy and Thermostats

Entropy production rate (due to the action of the system upon the thermostats and iden-
tified with the rate of their entropy increase, which is finite even though the thermostats
entropy is infinite because the thermostats are infinite) is defined in terms of Qj = −Ẋj ·
∂Xj

U0,j (X0,Xj ), which is the work per unit time, performed by the test system on the j -th
thermostat. Since Qj is interpreted as the heat ceded by the system to the thermostats the
entropy production in the configuration x is given by σ0(x) = ∑

j>0 βjQj (x).
If the volumes in phase space are measured by the distribution μ0 this quantity differs

from the contraction rate of the phase space volume by β0(Q̇0 + L0) ≡ β0(K̇0 + U̇0) and
K0 + U0 is expected to stay finite uniformly in time. If so the statistics of the long time
averages of the phase space contraction rate and of the entropy production rate will coincide
(however this is not proved as the theorems above only concern what happens in a arbitrarily
prefixed but finite time interval).

In other words in the frictionless thermostats model and in the isoenergetic thermostat
models, [6], the entropy production can be identified with the phase space contraction, pos-
sibly up to a time derivative of a quantity expected to be uniformly finite in time. Further-
more the entropy production is the same in both models of thermostats if the thermodynamic
parameters of the thermostats (δj , Tj , j > 0) are the same: this follows from the equivalence
theorem between frictionless and isoenergetic thermostats, [6, Theorem 1], which states that
under such conditions the microscopic motions of the two models starting from the same ini-
tial condition remain identical forever with μ0-probability 1.

Other thermostats can be considered: for instance the isokinetic thermostats. At a heuris-
tic level analogous conclusions can be reached, [14].

Considering external thermostats as correctly representing the physics of the interaction
of a system in contact with external reservoirs has been introduced in [15]. Their analysis
was founded on the grounds of
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(1) identity, in the thermodynamic limit, of the evolution with and without thermostats,
(2) identity of the phase space contraction of the thermostatted systems with the physical

entropy production (up to a time derivative).

For a more mathematical view see [14].
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